Сложение и вычитание дробей
Навигация по странице:
Сложение дробей
Сложение дробей с одинаковыми знаменателями.
Определение.
Чтобы сложить две дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений:
a | + | b | = | a + b |
c | c | c |
Примеры сложения дробей с одинаковыми знаменателями
Пример 1.
Найти сумму двух дробей с одинаковыми знаменателями:
1 | + | 2 | = | 1 + 2 | = | 3 |
5 | 5 | 5 | 5 |
Пример 2.
Найти сумму двух дробей с одинаковыми знаменателями:
3 | + | 2 | = | 3 + 2 | = | 5 |
7 | 7 | 7 | 7 |
Сложение обыкновенных дробей.
Определение.
Чтобы сложить две обыкновенные дроби, следует:
- привести дроби к наименьшему общему знаменателю;
- сложить числители дробей, а знаменатель оставить без изменений;
- сократить полученную дробь;
- Если получилась неправильная дробь преобразовать неправильную дробь в смешанную.
Примеры сложения обыкновенных дробей
Пример 3.
Найти сумму двух дробей:
1 | + | 1 | = | 1·2 | + | 1 | = | 2 | + | 1 | = | 2 + 1 | = | 3 | = | 3 | = | 1 |
3 | 6 | 3·2 | 6 | 6 | 6 | 6 | 6 | 3·2 | 2 |
Пример 4.
Найти сумму двух дробей:
29 | + | 44 | = | 29·3 | + | 44·2 | = | 87 | + | 88 | = | 87 + 88 | = |
30 | 45 | 30·3 | 45·2 | 90 | 90 | 90 |
= | 175 | = | 35·5 | = | 35 | = | 18 + 17 | = 1 | 17 |
90 | 18·5 | 18 | 18 | 18 |
Сложение смешанных чисел
Определение.
Чтобы сложить смешанные дроби, надо:
- привести дробные части этих чисел к наименьшему общему знаменателю;
- отдельно сложить целые части и отдельно дробные части;
- если при сложении дробных частей получилась неправильная дробь, выделить целую часть из этой дроби и прибавить ее к полученной целой части;
- сократить полученную дробь.
Примеры сложения смешанных чисел
Пример 5.
Найти сумму двух смешанных чисел:
2 | + | 1 | 1 | = | 2·2 | + | 1 | 1·3 | = | 4 | + | 1 | 3 | = | 1 + | 4 + 3 | = |
3 | 2 | 3·2 | 2·3 | 6 | 6 | 6 |
= | 1 + | 7 | = | 1 + | 6 + 1 | = | 1 + 1 | 1 | = 2 | 1 |
6 | 6 | 6 | 6 |
Пример 6.
Найти сумму двух смешанных чисел:
1 | 5 | + | 2 | 3 | = | 1 | 5·4 | + | 2 | 3·3 | = | 1 | 20 | + | 2 | 9 | = | 3 + | 20 + 9 | = |
6 | 8 | 6·4 | 8·3 | 24 | 24 | 24 |
= | 3 + | 29 | = | 3 + | 24 + 5 | = | 3 + 1 | 5 | = 4 | 5 |
24 | 24 | 24 | 24 |
Вычитание дробей
Вычитание дробей с одинаковыми знаменателями.
Определение.
Чтобы найти разницу двух дробей с одинаковыми знаменателями, нужно вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений:
a | - | b | = | a - b |
c | c | c |
Примеры вычитания дробей с одинаковыми знаменателями
Пример 7.
Найти разность двух дробей с одинаковыми знаменателями:
3 | - | 1 | = | 3 - 1 | = | 2 |
5 | 5 | 5 | 5 |
Пример 8.
Найти разность двух дробей с одинаковыми знаменателями:
8 | - | 5 | = | 8 - 5 | = | 3 |
41 | 41 | 41 | 41 |
Вычитание обыкновенных дробей.
Определение.
Чтобы вычесть из одной обыкновенной дроби другую, следует:
- привести дроби к наименьшему общему знаменателю;
- из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений;
- сократить полученную дробь.
Примеры вычитания обыкновенных дробей
Пример 9.
Найти разность двух дробей:
5 | - | 1 | = | 5 | - | 1·3 | = | 5 | - | 3 | = | 5 - 3 | = | 2 | = | 2 | = | 1 |
6 | 2 | 6 | 2·3 | 6 | 6 | 6 | 6 | 2·3 | 3 |
Пример 10.
Найти разность двух дробей:
3 | - | 1 | = | 3·3 | - | 1·5 | = | 9 | - | 5 | = | 9 - 5 | = | 4 | = | 2·2 | = | 2 |
10 | 6 | 10·3 | 6·5 | 30 | 30 | 30 | 30 | 15·2 | 15 |
Вычитание смешанных чисел.
Определение.
Чтобы выполнить вычитание смешанных чисел, надо:
- привести дробные части этих чисел к наименьшему общему знаменателю;
- если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить ее в неправильную дробь, уменьшив на единицу, целую часть;
- отдельно выполнить вычитание целых частей и отдельно дробных частей;
- сократить полученную дробь.
Примеры вычитания смешанных чисел
Пример 11.
Найти разность двух смешанных чисел:
2 | 1 | - | 1 | 1 | = | 2 | 1·3 | - | 1 | 1·2 | = | (2 - 1) | + | 3 | - | 2 | = |
2 | 3 | 2·3 | 3·2 | 6 | 6 |
= | 1 | + | 3 -2 | = | 1 | + | 1 | = | 1 | 1 |
6 | 6 | 6 |
Пример 12.
Найти разность двух смешанных чисел:
3 | 1 | - | 1 | 3 | = | 3 | 1·4 | - | 1 | 3·3 | = | 3 | 4 | - | 1 | 9 | = |
6 | 8 | 6·4 | 8·3 | 24 | 24 |
= | 2 | 24 + 4 | - | 1 | 9 | = | 1 + | 28 - 9 | = | 1 + | 19 | = 1 | 19 |
24 | 24 | 24 | 24 | 24 |
Пример 13.
Найти разность двух смешанных чисел:
1 | 1 | - | 3 | 2 | = | 1 | 1 | - | 3 | 2·2 | = | 1 | 1 | - | 3 | 4 | = | (1-3) | + | 1 - 4 | = |
6 | 3 | 6 | 3·2 | 6 | 6 | 6 |
= -2 | - | 3 | = | -2 | - | 3 | = | -2 | - | 1 | = | -2 | 1 |
6 | 2·3 | 2 | 2 |
Дроби
Виды дробей (обыкновенная правильная, неправильная, смешанная, десятичная)
Основное свойство дроби
Сокращение дроби
Приведение дробей к общему знаменателю
Преобразование неправильной дроби в смешанное число
Преобразование смешанного числа в неправильную дробь
Сложение и вычитание дробей
Умножение дробей
Деление дробей
Сравнение дробей
Преобразование десятичной дроби в обыкновенную дробь
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!