Угол между векторами.
Навигация по странице:
Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.
Основное соотношение. Косинус угла между векторами равен скалярному произведению векторов, поделенному на произведение модулей векторов.
Формула вычисления угла между векторами
cos α = | a·b |
|a|·|b| |
Примеры задач на вычисление угла между векторами
Примеры вычисления угла между векторами для плоских задачи
Пример 1. Найти угол между векторами a = {3; 4} и b = {4; 3}.
|b| = √42 + 32 = √16 + 9 = √25 = 5
Решение: Найдем скалярное произведение векторов:
a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.Найдем модули векторов:
|a| = √32 + 42 = √9 + 16 = √25 = 5|b| = √42 + 32 = √16 + 9 = √25 = 5
Найдем угол между векторами:
cos α = | a · b | = | 24 | = | 24 | = 0.96 |
|a| · |b| | 5 · 5 | 25 |
Пример 2. Найти угол между векторами a = {7; 1} и b = {5; 5}.
|b| = √52 + 52 = √25 + 25 = √50 = 5√2
Решение: Найдем скалярное произведение векторов:
a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.Найдем модули векторов:
|a| = √72 + 12 = √49 + 1 = √50 = 5√2|b| = √52 + 52 = √25 + 25 = √50 = 5√2
Найдем угол между векторами:
cos α = | a · b | = | 40 | = | 40 | = | 4 | = 0.8 |
|a| · |b| | 5√2 · 5√2 | 50 | 5 |
Примеры вычисления угла между векторами для пространственных задач
Пример 3. Найти угол между векторами a = {3; 4; 0} и b = {4; 4; 2}.
|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6
Решение: Найдем скалярное произведение векторов:
a·b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.Найдем модули векторов:
|a| = √32 + 42 + 02 = √9 + 16 = √25 = 5|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6
Найдем угол между векторами:
cos α = | a · b | = | 28 | = | 14 |
|a| · |b| | 5 · 6 | 15 |
Пример 4. Найти угол между векторами a = {1; 0; 3} и b = {5; 5; 0}.
|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2a · b |a| · |b| = 5 √10 · 5√2 = 1 2√5 = √5 10 = 0.1√5
Решение: Найдем скалярное произведение векторов:
a·b = 1 · 5 + 0 · 5 + 3 · 0 = 5.Найдем модули векторов:
|a| = √12 + 02 + 32 = √1 + 9 = √10|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2
Найдем угол между векторами:
cos α =
Вектора
Вектор: определение и основные понятия
Определение координат вектора заданного координатами его начальной и конечной точки
Модуль вектора. Длина вектора
Направляющие косинусы вектора
Равенство векторов
Ортогональность векторов
Коллинеарность векторов
Компланарность векторов
Угол между векторами
Проекция вектора
Сложение и вычитание векторов
Умножение вектора на число
Скалярное произведение векторов
Векторное произведение векторов
Смешанное произведение векторов
Линейно зависимые и линейно независимые вектора
Разложение вектора по базису
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!