Модуль вектора. Длина вектора.
Определение длины вектора
Для обозначения длины вектора используются две вертикальные линии слева и справа |AB|.
Формулы длины вектора
Формула длины вектора для плоских задач
В случае плоской задачи модуль вектора a = {ax ; ay} можно найти воспользовавшись следующей формулой:
Формула длины вектора для пространственных задач
В случае пространственной задачи модуль вектора a = {ax ; ay ; az} можно найти воспользовавшись следующей формулой:
Формула длины n -мерного вектора
В случае n-мерного пространства модуль вектора a = {a1 ; a2; ... ; an} можно найти воспользовавшись следующей формулой:
|a| = ( | n | ai2)1/2 |
Σ | ||
i=1 |
Примеры задач на вычисление длины вектора
Примеры вычисления длины вектора для плоских задачи
Решение: |a| = √22 + 42 = √4 + 16 = √20 = 2√5.
Решение: |a| = √32 + (-4)2 = √9 + 16 = √25 = 5.
Примеры вычисления длины вектора для пространственных задачи
Решение: |a| = √22 + 42 + 42 = √4 + 16 + 16 = √36 = 6.
Решение: |a| = √(-1)2 + 02 + (-3)2 = √1 + 0 + 9 = √10.
Примеры вычисления длины вектора для пространств с размерностью большей 3
Решение: |a| = √12 + (-3)2 + 32 + (-1)2 = √1 + 9 + 9 + 1 = √20 = 2√5
Решение: |a| = √22 + 42 + 42 + 62 + 22 = √4 + 16 + 16 + 36 + 4 = √76 = 2√19.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!