Умножение вектора на число
Навигация по странице:
Геометрическая интерпретация.
Произведение ненулевого вектора на число - это вектор, коллинеарный данному (сонаправленный данному, если число положительное, имеющий противоположное направление, если число отрицательное), а его модуль равен модулю данного вектора, умноженному на модуль числа.Алгебраическая интерпретация. Произведение ненулевого вектора на число - это вектор, координаты которого равны соответствующим координатам данного вектора, умноженным на число.
Формулы умножения вектора на число
Формула умножения вектора на число для плоских задач
В случае плоской задачи произведение вектора a = {ax ; ay} и числа k можно найти воспользовавшись следующей формулой:
k · a = {k · ax ; k · ay}
Формула умножения вектора на число для пространственных задач
В случае пространственной задачи произведение вектора a = {ax ; ay ; az} и числа k можно найти воспользовавшись следующей формулой:
k · a = {k · ax ; k · ay ; k · az}
Формула умножения n -мерного вектора
В случае n-мерного пространства произведение вектора a = {a1 ; a2; ... ; an} и числа k можно найти воспользовавшись следующей формулой:
k · a = {k · a1; k · a2; ... ; k · an}
Свойства вектора умноженного на число
Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
- b || a - вектора b и a параллельны
- a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0
- a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0
- |b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
Примеры задач на умножение вектора и числа
Пример умножения вектора на число для плоских задачи
Пример 1. Найти произведение вектора a = {1; 2} на 3.
Решение: 3 · a = {3 · 1; 3 · 2} = {3; 6}.
Пример умножения вектора на число для пространственных задачи
Пример 2. Найти произведение вектора a = {1; 2; -5} на -2.
Решение: (-2) · a = {(-2) · 1; (-2) · 2; (-2) · (-5)} = {-2; -4; 10}.
Вектора
Вектор: определение и основные понятия
Определение координат вектора заданного координатами его начальной и конечной точки
Модуль вектора. Длина вектора
Направляющие косинусы вектора
Равенство векторов
Ортогональность векторов
Коллинеарность векторов
Компланарность векторов
Угол между векторами
Проекция вектора
Сложение и вычитание векторов
Умножение вектора на число
Скалярное произведение векторов
Векторное произведение векторов
Смешанное произведение векторов
Линейно зависимые и линейно независимые вектора
Разложение вектора по базису
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!