Уравнение прямой
Уравнение прямой на плоскости
Любую прямую на плоскости можно задать уравнением прямой первой степени вида
A x + B y + C = 0
где A и B не могут быть одновременно равны нулю.
Уравнение прямой с угловым коэффициентом
Общее уравнение прямой при B≠0 можно привести к виду
y = k x + b
где k - угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.
k = tg φ
Уравнение прямой в отрезках на осях
Если прямая пересекает оси OX и OY в точках с координатами (a, 0) и (0, b), то она может быть найдена используя формулу уравнения прямой в отрезках
x | + | y | = 1 |
a | b |
Уравнение прямой, проходящей через две различные точки на плоскости
Если прямая проходит через две точки M(x1, y1) и N(x2, y2), такие что x1 ≠ x2 и y1 ≠ y2, то уравнение прямой можно найти, используя следующую формулу
x - x1 | = | y - y1 |
x2 - x1 | y2 - y1 |
Параметрическое уравнение прямой на плоскости
Параметрические уравнения прямой могут быть записаны следующим образом
где N(x0, y0) - координаты точки лежащей на прямой, a = {l, m} - координаты направляющего вектора прямой.
Каноническое уравнение прямой на плоскости
Если известны координаты точки N(x0, y0) лежащей на прямой и направляющего вектора a = {l; m} (l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу
x - x0 | = | y - y0 |
l | m |
Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки
Упростив это уравнение получим каноническое уравнение прямой
Выразим y через x и получим уравнение прямой с угловым коэффициентом
y - 7 = -4(x - 1)
y = -4x + 11
Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN.
MN = {2 - 1; 3 - 7} = {1; -4}
Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой
Решение. Так как My - Ny = 0, то невозможно записать уравнение прямой проходящей через две точки.
Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN.
MN = {2 - 1; 3 - 3} = {1; 0}
Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой
Уравнение прямой в пространстве
Уравнение прямой, проходящей через две различные точки в пространстве
Если прямая проходит через две точки M(x1, y1, z1) и N(x2, y2, z2), такие что x1 ≠ x2, y1 ≠ y2 и z1 ≠ z2, то уравнение прямой можно найти используя следующую формулу
x - x1 | = | y - y1 | = | z - z1 |
x2 - x1 | y2 - y1 | z2 - z1 |
Параметрическое уравнение прямой в пространстве
Параметрические уравнения прямой могут быть записаны следующим образом
x = l t + x0 | |
y = m t + y0 | |
z = n t + z0 |
где (x0, y0, z0) - координаты точки лежащей на прямой, {l; m; n} - координаты направляющего вектора прямой.
Каноническое уравнение прямой в пространстве
Если известны координаты точки M(x0, y0, z0) лежащей на прямой и направляющего вектора n = {l; m; n}, то уравнение прямой можно записать в каноническом виде, используя следующую формулу
x - x0 | = | y - y0 | = | z - z0 |
l | m | n |
Прямая как линия пересечения двух плоскостей
Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений
A1x + B1y + C1z + D1 = 0 | |
A2x + B2y + C2z + D2 = 0 |
при условии, что не имеет место равенство
A1 | = | B1 | = | C1 | . |
A2 | B2 | C2 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!