OnlineMSchool
Изучение математики онлайн.
Изучайте математику с нами и убедитесь: "Математика - это просто!"

Уравнение плоскости.

Определение. Плоскость - есть поверхность, полностью содержащая, каждую прямую, соединяющую любые её точки.

Общее уравнение плоскости

Любую плоскость можно задать уравнением плоскости первой степени вида

A x + B y + C z + D = 0

где A, B и C не могут быть одновременно равны нулю.

Уравнение плоскости в отрезках

Если плоскость пересекает оси OX, OY и OZ в точках с координатами (a, 0, 0), (0, b, 0) и (0, 0, с), то она может быть найдена, используя формулу уравнения плоскости в отрезках

x  +  y  +  z  = 1
a b c

Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали

Чтобы составить уравнение плоскости, зная координаты точки плоскости M(x0, y0, z0) и вектора нормали плоскости n = {A; B; C} можно использовать следующую формулу.

A(x - x0) + B(y - y0) + C(z - z0) = 0

Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой

Если заданы координаты трех точек A(x1, y1, z1), B(x2, y2, z2) и C(x3, y3, z3), лежащих на плоскости, то уравнение плоскости можно найти по следующей формуле

x - x1y - y1z - z1  = 0
x2 - x1y2 - y1z2 - z1
x3 - x1y3 - y1z3 - z1

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

0
Присоединяйтесь