Матрицы: определение и основные понятия.
Навигация по странице:
Определение матрицы
Определение.
Матрицей размера n×m называется прямоугольная таблица специального вида, состоящая из n строк и m столбцов, заполненная числами.
Количество строк и столбцов задают размеры матрицы.
Обозначение
Матрица - это таблица данных, которая берется в круглые скобки:
A = | 4 | 1 | -7 | ||
-1 | 0 | 2 |
Матрица обычно обозначаются заглавными буквами латинского алфавитв. Матрица содержащая n строк и m столбцов, называется матрицей размера n×m. При необходимости размер матрицы записывается следующим образом: An×m.
Элементы матрицы
Элементы матрицы A обозначаются aij, где i - номер строки, в которой находится элемент, j - номер столбца.
Пример.
Элементы матрицы A4×4:
A = | 4 | 1 | -7 | 2 | ||
-1 | 0 | 2 | 44 | |||
4 | 6 | 7 | 9 | |||
11 | 3 | 1 | 5 |
a11 = 4
Определение.
Строка матрицы называется нулевой, если все ее элементы равны нулю.Определение.
Если хотя бы один из элементов строки матрицы не равен нулю, то строка называется ненулевой.Пример.
Демонстрация нулевых и ненулевых строк матрицы:4 | 1 | -7 | < не нулевая строка | ||
0 | 0 | 0 | |||
0 | 1 | 0 |
Определение.
Столбец матрицы называется нулевым, если все его элементы равны нулю.Определение.
Если хотя бы один из элементов столбца матрицы не равен нулю, то столбец называется ненулевым.Пример.
Демонстрация нулевых и ненулевых столбцов матрицы:0 | 1 | -7 | ||
0 | 0 | 2 | ||
^ | ^ | ^ |
не не нулевой столбец
Диагонали матрицы
Определение.
Главной диагональю матрицы называется диагональ, проведённая из левого верхнего угла матрицы в правый нижний угол.Определение.
Побочной диагональю матрицы называется диагональ, проведённая из левого нижнего угла матрицы в правый верхний угол.Пример.
Демонстрация главной и побочной диагонали матрицы:0 | 1 | -7 | - главнаяпобочная диагональ | ||
0 | 0 | 2 |
0 | 1 | -7 | - главнаяпобочная диагональ | ||
0 | 0 | 2 | |||
8 | 2 | 9 |
Определение.
Следом матрицы называется сумма диагональных элементов матрицы.Обозначение.
След матрицы обозначается trA = a11 + a22 + ... + ann.Матрицы. вступление и оглавлениеМатрицы: определение и основные понятия.Сведение системы линейных уравнений к матрице.Виды матрицУмножение матрицы на число.Сложение и вычитание матриц.Умножение матриц.Транспонирование матрицы.Элементарные преобразования матрицы.Определитель матрицы.Минор и алгебраическое дополнение матрицы.Обратная матрица.Линейно зависимые и независимые строки.Ранг матрицы.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!