OnlineMSchool
Изучение математики онлайн.
Изучайте математику с нами и убедитесь: "Математика - это просто!"
ГлавнаяУпражненияОнлайн решебникСправочникТаблицы и формулыОбратная связьЗаказать решение


Коллинеарность векторов, условия коллинеарности векторов.


Определение.
Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

Коллинеарные вектора
рис. 1

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1.
Два вектора a и b коллинеарны, если существует число n такое, что

a = n · b

Условия коллинеарности векторов 2.
Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

Условия коллинеарности векторов 3.
Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.


Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение

a × b =  ijk  = i (aybz - azby) - j (axbz - azbx) + k (axby - aybx) = 
 ax  ay  az 
 bx  by  bz 

= i (aynaz - aznay) - j (axnaz - aznax) + k (axnay - aynax) = 0i + 0j + 0k = 0



Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Пример 1.
Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

ax  =  ay .
bx by

Значит:

Вектора a и b коллинеарны т.к.   1  =  2 .
4 8
Вектора a и с не коллинеарны т.к.   1  ≠  2 .
5 9
Вектора с и b не коллинеарны т.к.   5  ≠  9 .
4 8

Пример 2.
Доказать что вектора a = {0; 3} и b = {0; 6} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2
ay 3

Найдем значение na:

na = {2 · 0; 2 · 3} = {0; 6}

Так как b = na, то вектора a и b коллинеарны.

Пример 3.
найти значение параметра n при котором вектора a = {3; 2} и b = {9; n} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay .
bx by

Значит:

3  =  2 .
9 n

Решим это уравнение:

n =  2 · 9  = 6
3

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Пример 4.
Какие из векторов a = {1; 2; 3}, b = {4; 8; 12}, c = {5; 10; 12} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax  =  ay  =  az .
bx by bz

Значит:

Вектора a и b коллинеарны т.к.   1  =  2  =  3 .
4 8 12
Вектора a и с не коллинеарны т.к.   1  =  2  ≠  3 .
5 10 12
Вектора с и b не коллинеарны т.к.   5  =  10  ≠  12 .
4 8 12

Пример 5.
Доказать что вектора a = {0; 3; 1} и b = {0; 6; 2} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2
ay 3

Найдем значение na:

na = {2 · 0; 2 · 3; 2 · 1} = {0; 6; 2}

Так как b = na, то вектора a и b коллинеарны.

Пример 6.
найти значение параметров n и m при которых вектора a = {3; 2; m} и b = {9; n; 12} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay  =  az .
bx by bz

Значит:

3  =  2  =  m
9 n 12

Из этого соотношения получим два уравнения:

3  =  2
9 n
3  =  m
9 12

Решим эти уравнения:

n =  2 · 9  = 6
3
m =  3 · 12  = 4
9

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.


Смотрите также:

Добавить комментарий



© 2011-2014 Довжик Михаил
Копирование материала запрещено.
СЕРВИСЫ

  Онлайн калькуляторы
  Онлайн упражнения
  Справочник
  Таблицы и формулы
OnlineMSchool

  Оплата услуг
  О проекте
  Помочь сайту
  Обратная связь
  support@onlinemschool.com