OnlineMSchool
Изучение математики онлайн.
Изучайте математику с нами и убедитесь: "Математика - это просто!"

Окружность, круг, сегмент, сектор. Формулы и свойства

Изображение окружности, радиуса, диаметра, хорды, дуги, секущей и касательной Изображение сектора и сегмента Изображение центрального и вписанного угла

Определение. Окружность — это совокупность всех точек на плоскости, которые находятся на одинаковом расстоянии от заданной точки О, которая называется центром окружности.
Определение. Единичная окружность - окружность, радиус которой равна единице.
Определение. Круг - часть плоскости, ограничена окружностью.
Определение. Радиус окружности R - расстояние от центра окружности О до любой точки окружности.
Определение. Диаметр окружности D - отрезок, который соединяет две точки окружности и проходит через ее центр.

Основные свойства окружности

1. Диаметр окружности равен двум радиусам.

D = 2r

2. Кратчайшее расстояние от центра окружности к секущей (хорде) всегда меньше радиуса.
3. Через три точки, которые не лежат на одной прямым, можно провести только одну окружность.
4. Среди всех замкнутых кривых с одинаковой длиной, окружность имеет наибольшую площадь.
5. Если две окружности соприкасаются в одной точке, то эта точка лежит на прямой, что проходит через центры этих окружностей.

Формулы длины окружности и площади круга

Формулы длины окружности

1. Формула длины окружности через диаметр:

L = πD

2. Формула длины окружности через радиус:

L = 2πr

Формулы площади круга

1. Формула площади круга через радиус:

S = πr2

2. Формула площади круга через диаметр:

S = πD24

Уравнение окружности

1. Уравнение окружности с радиусом r и центром в начале декартовой системы координат:

r2 = x2 + y2

2. Уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

r2 = (x - a)2 + (y - b)2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:
{x = a + r cos t
y = b + r sin t

Касательная окружности и ее свойства

Определение. Касательная окружности - прямая, которая касается окружности только в одной точке.

Основные свойства касательных к окружности

1. Касательная всегда перпендикулярна к радиусу окружности, проведенного в точке соприкосновения.
2. Кратчайшее расстояние от центра окружности к касательной равна радиусу окружности.
касательная
3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

AB = AC

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

∠ОAС = ∠OAB

Секущая окружности и ее свойства

Определение. Секущая окружности - прямая, которая проходит через две точки окружности.

Основные свойства секущих

Секущая
1. Если с точки вне окружности (Q) выходят две секущие, которые пересекают окружность в двух точках A и B для одной секущей и C и D для другой секущей, то произведения отрезков двух секущих равны между собою:

AQ ∙ BQ = CQ ∙ DQ

Секущая
2. Если из точки Q вне окружности выходит секущая прямая, что пересекает окружность в двух точках A и B, и касательная с точкой соприкосновения C, то произведение отрезков секущей равна квадрату длины отрезка касательной:

AQ ∙ BQ = CQ2

Хорда окружности ее длина и свойства

Определение. Хорда окружности - отрезок, который соединяет две точки окружности.

Длина хорды

длина хорды через центральный угол
1. Длина хорды через центральный угол и радиус:

AB = 2r sin α2

длина хорды через вписанный угол
2. Длина хорды через вписанный угол и радиус:

AB = 2r sin α

Основные свойства хорд

хорды
1. Две одинаковые хорды стягивают две одинаковые дуги:

если хорды AB = CD, то

дуги ◡ AB = ◡ CD

хорды
2. Если хорды параллельные, то дуги между ними будут одинаковые:

если хорды AB ∣∣ CD, то

◡ AD = ◡ BC

хорды
3. Если радиус окружности перпендикулярен к хорде, то он разделяет хорду пополам в точке их пересечения:

если OD AB, то

AC = BC

хорды
4. Если две хорды AB и CD пересекаются в точке Q, то произведение отрезков, что образовались при пересечении, одной хорды равны произведению отрезков другой хорды:

AQ ∙ BQ = DQ ∙ QC

хорды
5. Хорды с одинаковой длиной находятся на одинаковом расстоянии от центра окружности.

если хорды AB = CD, то

ON = OK

хорды
6. Чем больше хорда тем ближе она к центру.

если CD > AB, то

ON < OK

Центральный угол, вписанный угол и их свойства

Определение. Центральный угол окружности - угол, вершиной которого есть центр окружности.
Определение. Угол вписанный в окружность - угол, вершина которого лежит на окружности, а стороны угла пересекают окружность.

Основные свойства углов

вписанные уголы опирающиеся на одну дугу
1. Все вписанные углы, которые опираются на одну дугу - равны.

вписанный угол опирающийся на диаметр
2. Вписанний угол, который опирается на диаметр будет прямым (90°).

вписанный и центральный угол
3. Вписанный угол равен половине центрального угла, что опирается на ту же дугу

β = α2

вписанные углы опирающиеся на одну хорду
4. Если два вписанных угла опираются на одну хорду и находятся по различные стороны от нее, то сумма этих углов равна 180°.

α + β = 180°

Определение. Дуга окружности (◡) - часть окружности, которая соединяет две точки на окружности.
Определение. Градусная мера дуги - угол между двумя радиусами, которые ограничивают эту дугу. Градусная мера дуги всегда равна градусной мере центрального угла, который ограничивает эту дугу своими сторонами.
длина дуги
Формула длины дуги через центральный угол (в градусах):

l = πr180°∙ α

Определение. Полуокружность - дуга в которой концы соединены диаметром окружности.
Определение. Полукруг () - часть круга, которая ограничена полуокружностью и диаметром.
Определение. Сектор () - часть круга, которая ограничена двумя радиусами и дугой между этими радиусами.
сектор
Формула. Формула площади сектор через центральный угол (в градусах)

S = πr2360°∙ α

Определение. Сегмент - часть круга, которая ограничена дугой и хордой, что соединяет ее концы.
Определение. Концентрические окружности - окружности с различными радиусами, которые имеют общий центр.
Определение. Кольцо - часть плоскости ограниченная двумя концентрическими окружностями.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

0